PROYECTO DE INSTALACIÓN ELÉCTRICA EN EDIFICIO DE PÚBLICA CONCURRENCIA.

DOCUMENTO BÁSICO Nº 2 : MEMORIA
Índice

1. OBJETO DEL PROYECTO .. 4
2. PROMOTOR ... 4
3. AUTOR DEL PROYECTO ... 5
4. LOCALIZACION ... 5
5. ANTECEDENTES .. 5
 5.1. CARACTERISTICAS DEL LOCAL .. 5
 5.2. DIMENSIONES Y DISTRIBUCIÓN ... 6
 5.3. CLASIFICACIÓN Y DESCRIPCION DE LA ACTIVIDAD 8
 5.4. CARACTERISTICAS DE LA INSTALACIÓN ... 8
 5.4.1. Cálculo de la ocupación ... 8
 5.4.2. Análisis de Suministros y Alumbrado de Emergencia 9
 5.4.3. Prescripciones de carácter general para la instalación eléctrica 11
6. REGLAMENTACIÓN .. 12
7. JUSTIFICACIÓN DE PROYECTO ... 14
8. PROGRAMA DE NECESIDADES ... 15
 8.1. ANALISIS DE POTENCIAS ... 15
 8.2. GRADO DE ELECTRIFICACIÓN Y SUMINISTRO DE ENERGÍA 15
 8.3. CIRCUITOS DE ALUMBRADO .. 16
 8.4. CIRCUITOS DE FUERZA .. 16
 8.5. GRUPO ELECTROGENO .. 18
 8.6. SISTEMA DE ALIMENTACIÓN INTERRUMPIDA SAI 19
9. PROTECCION CONTRA CONTACTOS DIRECTOS .. 20
10. PROTECCION CONTRA CONTACTOS INDIRECTOS .. 21
11. PROTECCION CONTRA SOBRETENSIONES .. 27
12. PROTECCION CONTRA SOBREINTENSIDADES ... 29
13. BATERIA DE CONDENSADORES ... 30
14. BASES DE CÁLCULO .. 31
15. JUSTIFICACION DE LA SOLUCION ADOPTADA ... 34
 15.1. ACOMETIDA .. 34
 15.2. INSTALACION DE ENLACE. ESQUEMA .. 34
 15.3. CAJA GENERAL DE PROTECCION Y MEDIDA ... 35
15.4. DERIVACIÓN INDIVIDUAL ...36
15.5. DISPOSITIVOS GENERALES DE MANDO Y PROTECCIÓN. INTERRUPTOR
CONTROL DE POTENCIA ..37
15.6. INSTALACIÓN INTERIOR ...38
15.6.1. CUADRO GENERAL DE MANDO Y PROTECCIÓN (CGMP)38
15.7. TUBOS PROTECTORES, CONDUCTORES Y CANALIZACIONES38
15.8. NIVEL DE AISLAMIENTO ..40
15.9. CIRCUITOS ..41
15.10. PROTECCIONES ...41
15.11. ILUMINACION ..41
15.12. ALUMBRADOS ESPECIALES ..43
16. JUSTIFICACION DE LA SOLUCION ADOPTADA ...43
16.1. Reglamento Electrotécnica para Baja Tensión ...43
16.2. Código Técnico de la Edificación ...53
17. PRESUPUESTO TOTAL ..55
1. OBJETO DEL PROYECTO

Se redacta el presente PROYECTO DE INSTALACIÓN ELÉCTRICA EN LOCAL DESTINADO A SUPERMERCADO, con objeto de definir, calcular y diseñar los elementos que componen la instalación eléctrica en Baja Tensión del local comercial de referencia. Atendiendo además al requisito establecido en la ITC-BT 04 y Su Guía del Reglamento Electrotécnico de Baja Tensión, siendo de aplicación para la redacción del mismo la Norma UNE 157001.

Se pretende también que este Proyecto forme parte de la documentación necesaria para la ejecución y posterior legalización de la instalación ante los Organismos competentes.

1.1. ALCANCE.

El alcance del presente Proyecto comprende la instalación en BT, desde la Caja General de Protección y Medida hasta receptores finales de un local en una sola planta destinado a supermercado.

Se incluye dentro de este alcance:

Dimensionado de la alimentación necesaria y cableado para la maquinaria de frío y climatización, ubicada en un de altillo no transitable.

Dimensionado de la alimentación y de las características del grupo electrógeno necesario, que se ubicará en una sala ya proyectada y existente destinada para tal fin.

No están incluidos dentro del alcance, la instalación e iluminación del parking del centro comercial ni ascensores del mismo.

2. PROMOTOR.

Se realiza la redacción del presente Proyecto a petición de la Escuela Politécnica Superior de Jaén, siendo titular la Universidad de Jaén ubicada en el Campus de Las Lagunillas de Jaén capital.
3. AUTOR DEL PROYECTO.

El presente proyecto ha sido elaborado por Dña. Sagrario Sánchez López alumna de Grado en Ingeniería Electrónica de la Escuela Politécnica Superior de la Universidad de Jaén.

4. LOCALIZACIÓN.

La instalación que se proyecta se localiza en la planta baja de un edificio comercial ubicado en una parcela que dispone además de zona en superficie de establecimiento de vehículos para sus clientes. La citada parcela se ubica en la Avenida del Mediterráneo de Málaga capital.

Se accede a la misma a través de la citada Avenida del Mediterráneo, dirección Puerto de la Torre en el desvío del P.K. 14.4.

Las coordenadas U.T.M. son: X = 404695; Y = 4215486.

La ubicación y orientación se encuentra recogida en el plano nº 1: SITUACIÓN y nº 2 EMPLAZAMIENTO.

5. ANTECEDENTES.

5.1. CARACTERÍSTICAS DEL LOCAL.

El local que nos ocupa se encuentra en la planta baja de un edificio destinado principalmente a locales comerciales, siendo el uso de la planta baja 100% destinado al establecimiento comercial supermercado objeto de este proyecto. El edificio cuenta además con dos plantas sótano de parking y una primera planta, en el que se encuentra actualmente instalado un gimnasio, los cuales no son objeto de este proyecto.

El local comercial objeto de este estudio linda en tres de sus laterales con vía pública y en su parte posterior con vía pública y edificación industrial. Dispone de una zona de muelle de carga y rampa de acceso para camiones. Tiene una altura libre de 5 metros. En la zona de almacén y en la zona de público, dispone de techo de paneles de aluminio N+E de color
blanco, a una altura de 3,30 m, y falso techo de PVC 60x60 en el cuarto técnico, CCTV, oficina, aseos y vestuario, siendo en estas zonas de 2,5 m. de altura.

El local comercial dispone de dos fachadas, una de ellas a la que denominaremos fachacha principal ubicada en la Avd. del Mediterráneo, a la misma se accede a través de la vía de servicio, tiene orientación suroeste y es donde se encuentra el vestíbulo de entrada/salida junto con la puerta principal tipo dos hojas correderas de 1,25 m de anchura libre cada una de cristalera más persiana enrollable automática, que será por la que accede el público desde el exterior. En esta fachada también se encuentra una de las puertas de seguridad, para evacuación en caso de emergencia.

La fachada lateral norte linda con una edificación industrial, y es donde se encuentra ubicada la zona de carga y descarga de camiones, dispone de portón metálico automático de 2,60 x 2,60 m. En la fachada sur de c/ Lentisco, se encuentra la rampa de subida/bajada a las plantas de parking ubicadas en el sótano del edificio.

La edificación a la cual pertenece el local está realizado con estructura de hormigón armado con cerramiento de placas alveolares prefabricadas. El cerramiento exterior consiste en paneles de hormigón prefabricado de 20 cm de espesor con aislamiento térmico y sobre este panel se encuentra instalado el revestimiento exterior mediante planchas de Alucobond.

En la zona de recepción de mercancías existe un altillo técnico para instalaciones accesible, formado por un forjado de paneles de hormigón aligerado.

Por tratarse de un edificio de uso comercial con una altura de evacuación inferior a 15 m la estabilidad al fuego de toda la estructura es de R-90. Punto que se cumple además por estar ejecutado con prefabricados de hormigón.

5.2. DIMENSIONES Y DISTRIBUCIÓN.

La edificación tiene una superficie total construida de 1.751,58 m2 y una superficie Útil de 1.672,08 m2 distribuida en dieciseis zonas con las siguientes superficies:

<table>
<thead>
<tr>
<th>Dependencia</th>
<th>Superficie Útil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona de Cajas</td>
<td>73,35 m2</td>
</tr>
</tbody>
</table>
Distribuidor | 3,12 m²
Sala de ventas | 1.006,03 m²
Hall | 87,95 m²
CCTV | 5,97 m²
Oficina | 12,93 m²
Sala de Descanso | 23,12 m²
Vestuario masc + fem | 14,83 m²
Aseos público | 22,28 m²
Cuarto Técnico | 9,94 m²
Obrador Pan | 58,02 m²
Cámara Frigorífica | 35,95 m²
Almacén | 162,34 m²
Almacén 24 h | 85,30 m²
Muelle | 39,07 m²
Altillo Técnico Climatización (No computa) | 75,12 m²
Altillo Técnico Frío Industrial (No computa) | 18,48 m²
TOTAL SUPERFICIE ÚTIL : | **1.672,08 m²**
Total Superficie Construida: | **1.751,58 m²**

La sala de ventas se encuentra dividida en seis pasillos, dispone de dos murales de frío más una línea para doce islas de congelados, y una vez deducidos los espacios ocupados por murales, estanterías y resto de mobiliario cuenta con una superficie ocupable junto con el distribuidor y el hall de 880,15 m².

El local comercial se encuentra dividido en dos áreas principales:

Zona de Público: constituida por 1 Sala de Ventas, 1 zona de cajas, 1 vestíbulo de entrada, 2 aseos para el público, escaleras de subida/bajada al sótano y ascensores.

Zona Privada del Supermercado: constituida por 2 salas de almacén, 1 cámara frigorífica y 1 cámara de congelación, 1 sala panadería, 1 cuarto técnico para gestión mercancía, 1 oficina de dirección, 1 sala para circuito cerrado TV, 1 sala de descanso, 1 vestuario masculino/femenino y 2 aseos de personal masc. y 1 aseo femenino.
La distribución se encuentra recogida en el plano nº 3: Planta de DISTRIBUCIÓN.

5.3. CLASIFICACIÓN Y DESCRIPCIÓN DE LA ACTIVIDAD.

El local proyectado en su totalidad, por su uso y naturaleza para el cual está diseñado, será clasificado según la ITC-BT 28 del Reglamento Electrotécnico de Baja Tensión como LOCAL DE PÚBLICA CONCURRENCIA, al tratarse de un Local de Reunión en establecimiento comercial para más de 50 personas de ocupación.

Dado que la ocupación prevista será de 440 personas como se detalla en el apartado 5.4.1. Cálculo de la Ocupación, será además necesario que el local disponga de alumbrado de emergencia y suministro de socorro.

Deberán disponer de suministro de reserva los establecimientos comerciales de más de 2.000 m2, no siendo necesario para el local proyectado al disponer de una superficie útil total de 1.672,08 m2.

La actividad a desarrollar es la propia de un SUPERMERCADO para venta al detalle en régimen de autoservicio, en la que se realiza venta de carne, frutas y verduras, actividad esta que puede ser molesta por la producción de malos olores.

Dentro de la Ley 7 de 2.007 de Gestión Integrada de la Calidad Ambiental de Andalucía aparece incluida en el Anexo I y sometida al trámite de Calificación Ambiental (CA).

5.4. CARACTERÍSTICAS DE LA INSTALACIÓN.

5.4.1. Cálculo de la ocupación.

Para el cálculo de la ocupación, la ITC-BT-28 y su Guía, establecen un valor genérico de 1 persona para cada 0.8 m2 de superficie útil, aunque dado que la determinación de la superficie útil de cada local de pública concurrencia depende de su actividad y tendiendo en cuenta que existen valores de densidad de ocupación particularizados para cada tipo de actividad recogidos en el Código Técnico de la Edificación (CTE) que se ajustan más a la
realidad de la instalación proyectada, se ha seguido la recomendación de la Guía de Aplicación del REBT ITC BT 28, en cuanto a aplicación de los valores de densidad de ocupación del CTE.

A continuación se aplicarán los valores de densidad de ocupación especificados para cada tipo de actividad en el Código Técnico de la Edificación (CTE), según recoge su sección SI-3 del DB-SI Seguridad en caso de Incendio, punto 2, Cálculo de la Ocupación, se procederá a calcular la ocupación del local proyectado utilizando los citados valores de densidad de ocupación.

<table>
<thead>
<tr>
<th>DEPENDENCIA</th>
<th>Superficie Dep. (m²)</th>
<th>Sup. Mobiliario (m²)</th>
<th>Sup. de Aforo (m²)</th>
<th>Aforo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall, Sala de Ventas, zona cajas.</td>
<td>1.167,33</td>
<td>368,33</td>
<td>799,00</td>
<td>400</td>
</tr>
<tr>
<td>Aseos</td>
<td>22,28</td>
<td>0</td>
<td>22,28</td>
<td>8</td>
</tr>
<tr>
<td>Oficina</td>
<td>12,93</td>
<td>0</td>
<td>12,93</td>
<td>2</td>
</tr>
<tr>
<td>Almacén y muelle</td>
<td>286,71</td>
<td>0</td>
<td>286,71</td>
<td>8</td>
</tr>
<tr>
<td>Vestuario</td>
<td>14,83</td>
<td>0</td>
<td>14,83</td>
<td>2</td>
</tr>
<tr>
<td>Sala de Descanso</td>
<td>23,12</td>
<td>0</td>
<td>23,12</td>
<td>3</td>
</tr>
<tr>
<td>CCTV</td>
<td>5,97</td>
<td>0</td>
<td>5,97</td>
<td>1</td>
</tr>
<tr>
<td>Cuarto Técnico</td>
<td>9,94</td>
<td>0</td>
<td>9,94</td>
<td>0</td>
</tr>
<tr>
<td>Cámara Frig.</td>
<td>35,95</td>
<td>0</td>
<td>35,95</td>
<td>0</td>
</tr>
<tr>
<td>Sala Obrero Pan</td>
<td>58,02</td>
<td>0</td>
<td>58,02</td>
<td>2</td>
</tr>
</tbody>
</table>

Así pues la ocupación Total del local, será de 440 personas.

5.4.2. Análisis de Suministros y Alumbrado de Emergencia.

Dado que se superan las 300 personas de ocupación en locales de reunión, es necesario disponer de suministro complementario o de seguridad en el local proyectado. El suministro
de seguridad será destinado a alimentar el alumbrado de emergencia, los sistemas contra incendios, los sistemas de seguridad y el resto de maquinaria cuyo fallo suponga un error grave en la seguridad del edificio. El suministro de seguridad a prever es un Suministro de Socorro.

El suministro de Socorro está limitado a una potencia receptora mínima equivalente al 15 por 100 de la potencia total contratada para el suministro normal. Teniendo en cuenta que la potencia contratada se prevé en 139 kW, resultará que la potencia mínima a cubrir con el suministro de reserva será de 20.470 W. El grupo electrógeno dispuesto tendrá una potencia de 150 kVA cumpliendo con ello el requisito de cubrir el 15%.

Al tratarse de un local de Pública Concurrencia se dispondrá de Alumbrado de Emergencia, que en caso de fallo de la alimentación al alumbrado normal, permita la iluminación en los locales y accesos hasta las salidas, para una eventual ocupación del público o la iluminación de otros puntos necesarios.

La alimentación del alumbrado de emergencia será automática con corte breve.

Dentro del alumbrado de seguridad, el local dispondrá de:

- Alumbrado de evacuación: Se instalarán luminarias autónomas de alumbrado de emergencia en número suficiente como para asegurar la evacuación segura y fácil del público al exterior del local. Estará previsto para entrar en funcionamiento automáticamente al producirse el fallo de los alumbrados generales o al bajar la tensión de estos a menos del 70% de su valor nominal. Funcionará durante un mínimo de una hora y deberá proporcionar a nivel de suelo y en el eje de los pasos principales una iluminancia horizontal mínima de 1 lux, mientras que en los puntos donde estén situados los equipos de protección contra incendios y los cuadros de distribución del alumbrado, la iluminancia deberá ser de 5 lux.

- Alumbrado ambiente o anti pánico: Está previsto para evitar todo riesgo de pánico y proporcionar una iluminación ambiente que permita a los ocupantes acceder a las rutas de evacuación e identificar obstáculos, y proporcionará una iluminancia horizontal mínima de 0,5 lux desde el suelo hasta una altura de 1 metro.

- Alumbrado en zonas de alto riesgo: No existe ninguna zona de este tipo.
Todos los aparatos autónomos destinados a alumbrado de emergencia deberán cumplir las normas UNE-EN 60.598-2-22 y la norma UNE 20.392 o UNE 20.062, según sea la luminaria para lámparas fluorescentes o incandescentes respectivamente.

Además del Suministro de Seguridad previsto, por razones de seguridad se dispondrá de un Sistema de Alimentación Ininterrumpida (S.A.I.) que asegurará el funcionamiento de todos los sistemas a él conectados de forma automática de Categoría “SIN CORTE” ya que asegura un alimentación automática de forma continua en las condiciones específicas durante el periodo de transición, incluso en lo que se refiere a variaciones de tensión y frecuencia. Dicho sistema estará formado por un S.A.I. trifásico monobloque con una potencia nominal de 4 kVA y 10 minutos de autonomía a potencia nominal.

5.4.3. Prescripciones de carácter general para la instalación eléctrica.

El C.G.D. dispondrá de un interruptor de corte general y número suficiente de dispositivos de mando y protección para cada una de la líneas de distribución y líneas secundarias, tal y como se describen en la documentación gráfica y anexos. Cada uno de estos dispositivos dispondrá de una placa indeleble e identificativa del circuito al que pertenecen.

El C.G.D. se colocará en una zona de fácil acceso al personal y con acceso restringido para el público.

Las líneas de alimentación del alumbrado en las zonas de público serán dimensionadas y distribuidas de tal forma que el corte de corriente en cualquiera de ellas no afecte a más de la tercera parte del total de lámparas instaladas en las zonas indicadas.

Las canalizaciones estarán constituidas principalmente por conductores aislados de tensión nominal 750 V colocados bajo tubos protectores de PVC corrugado “NO PROPAGADOR DE LLAMA” empotrados en paredes, sobre bandejas de acero situadas por encima del falso techo a 2,5-3,5 metros de altura sobre el suelo y canalizaciones de acero empotradas en el suelo. Además serán de emisión de humos y opacidad reducida como medida de seguridad adicional.
Los cables eléctricos a utilizar en toda la instalación interior serán “NO PROPAGADORES DEL INCENDIO Y CON EMISIÓN DE HUMOS Y OPACIDAD REDUCIDA”, del tipo ES07Z1 ó RZ1 K0.6/1KV (AS+). Hay varios circuitos que por su naturaleza deben disponer de unas características especiales que les permitan seguir en funcionamiento incluso bajo la acción del fuego (C.S. PCI y Línea Grupo electrógeno), cuyo cable a utilizar será resistente al fuego (UNE-EN 50200) del tipo SZ1-K0.6/1KV (AS+), este último cable se utilizará para los circuitos de seguridad.

6. REGLAMENTACIÓN.

El presente proyecto recoge las características de los materiales, los cálculos que justifican su empleo y la forma de ejecución de las obras a realizar, dando con ello cumplimiento a las siguientes disposiciones:

- Ordenanzas de Seguridad e Higiene en el Trabajo (OSHT).
- Ley 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborales.
- Real Decreto 1627/1997 de 24 de octubre de 1.997, sobre Disposiciones mínimas de seguridad y salud en las obras.
- Real Decreto 486/1997 de 14 de abril de 1997 por el que se establecen las condiciones de Seguridad y Salud en los lugares de Trabajo.
- Real Decreto 485/1997 de 14 de abril de 1997, sobre Disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo.
- Real Decreto 1215/1997 de 18 de julio de 1997, sobre Disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo.
- Real Decreto 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura.
- Real Decreto 773/1997 de 30 de mayo de 1997, sobre Disposiciones mínimas de seguridad y salud relativas a la utilización por los trabajadores de equipos de protección individual.
Igualmente se aplicarán aquellas prescripciones particulares que dicten los Organismos Oficiales Competentes como el Excmo. Ayuntamiento, de la localidad de ubicación del proyecto.

- Real decreto 56/1995 de enero, por el que se modifica el Real decreto 1435/1992 de 27 de noviembre, relativo a las disposiciones de aplicación de la directiva del Consejo 89/392 /CEE, sobre máquinas.
- Ordenanza General de seguridad e higiene en el Trabajo (Orden del 9 de marzo de 1991).
- Reglamento de Instalaciones de protección Contra incendios del Ministerio de Industria y Energía, Real Decreto 1967/2004 y las normas UNE que en él se citan.
- Código Técnico de la Edificación, REAL DECRETO 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
- Normas tecnológicas de la edificación NTE-IEB (B.O.E. de 20 y 27-4 74 y 4-5- 74).
- Código Técnico de la Edificación, DB HE3 Eficiencia energética de las instalaciones de iluminación.
- Real Decreto 1955/2000 de 1 de Diciembre, por el que se normalizan las Actividades de Transporte, Distribución, Comercialización, Suministro y Procedimiento de Autorización de Instalaciones de Energía Eléctrica.
- Reglamento Electrotécnico para Baja Tensión (Real Decreto 842/2002 de 2 de agosto e Instrucciones Técnicas complementarias).
- Resolución de 3 de julio de 2003, de la Dirección General de Industria, Energía y Minas, por la que se aprueban los contenidos esenciales de determinados proyectos y el modelo de certificado como consecuencia de la aprobación por el Real Decreto 842/2002, de 2 de agosto, del reglamento electrotécnico para baja tensión.
- Normalización y Normas particulares de la Compañía Suministradora de Energía Eléctrica.
- NTP 142 del Instituto de Seguridad e Higiene en el trabajo.
- Normas UNE que le sean de aplicación.
- Ley 22/2011 de 28 de Julio, de Residuos y Suelos contaminados.

BIBLIOGRAFÍA

- Catalogo de interruptores automáticos y diferenciales GRUPO SCHNEIDER
• Catalogo de conductores y cables de BT, GENERAL ELECTRIC.
• Catalogo de pequeño material y mecanismos interiores SIMON
• Catalogo de envolventes eléctricas URIARTE
• Catalogo de luminarias y lámparas PHILIPS
• Catalogo de luminarias de emergencia DAISALUX
• Catálogo de Protectores Sobretensión CIRPROTEC
• Catálogo Grupos Electrógenos HIMOINSA.

BIBLIOGRAFIA DIGITAL.

También se han realizado consultas, entre otras, en las siguientes páginas web:

• www.aenor.es
• www.unesa.es
• www.codigotecnico.org
• www.ree.es
• www.endesa.es
• www.schneiderelectric.es
• www.philips.es
• www.voltimum.es
• www.presupuesta.com
• www.energia.com
• www.grupocircuit.com
• www.sodeca.com
• www.coordinadordesalud.com
• www.sodeca.com

7. JUSTIFICACIÓN DE PROYECTO.

Se justifica la realización del presente Proyecto por lo estipulado en la ITC-BT-04 del Reglamento Electrotécnico para Baja Tensión, que estipula que, al tratarse de un local de los denominados de pública concurrencia según la clasificación que contiene IT-IC 28 del citado
Reglamento, para la legalización de la instalación eléctrica es necesario disponer de la siguiente documentación:

- Proyecto de la instalación eléctrica.
- Certificado de Dirección Técnica.
- Certificado de Organismo de Control Administrativo (OCA).
- Certificado de Instalación suscrito por Instalador autorizado IBTB.

8. PROGRAMA DE NECESIDADES.

8.1. ANALISIS DE POTENCIAS.

La previsión de cargas en el local según la suma de todos los receptores será de 246.988 W, aplicándole un factor de simultaneidad de 0,65 dado que no todos los receptores se encuentran funcionando al unisono, se tendrá una potencia de 160.542 W, que será nuestra potencia instalada.

La potencia a contratar, considerando un factor de utilización de 0,85, será según Instrucciones Técnicas de la Compañía Suministradora de Sevillana Endesa será de 139 kW.

8.2. GRADO DE ELECTRIFICACIÓN Y SUMINISTRO DE ENERGÍA.

La energía eléctrica se tomará de la red de baja tensión que la Compañía suministradora de Electricidad posee en la zona, siendo la tensión existente de 400 V.

El grado de electrificación se establece en base a las necesidades para este tipo de locales comerciales, que una vez realizados los cálculos supera los valores mínimos establecidos en la ITCBT- 10 donde se recogen 100W/m2 por lo que se cumple la ITC.
8.3. CIRCUITOS DE ALUMBRADO.

<table>
<thead>
<tr>
<th>DENOMINACION</th>
<th>POTENCIA INST. (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1</td>
<td>Al. Sala descanso-Oficina-CCTV-c. técnico y entrada</td>
</tr>
<tr>
<td>ES1</td>
<td>Emergencia 1</td>
</tr>
<tr>
<td>AS2</td>
<td>Alumb. Aseos Públicos y aseos personal</td>
</tr>
<tr>
<td>ES2</td>
<td>Emergencia 2</td>
</tr>
<tr>
<td>AS3.1</td>
<td>Alumb. Sala Ventas</td>
</tr>
<tr>
<td>AS3.2</td>
<td>Alumb. Sala Ventas</td>
</tr>
<tr>
<td>ES3</td>
<td>Emerg. Sala Ventas</td>
</tr>
<tr>
<td>AS4.1</td>
<td>Alumb. Sala Ventas</td>
</tr>
<tr>
<td>AS4.2</td>
<td>Alumb. Sala Ventas</td>
</tr>
<tr>
<td>ES4</td>
<td>Emerg. Sala Ventas</td>
</tr>
<tr>
<td>AS5.1</td>
<td>Alumb. Sala Ventas</td>
</tr>
<tr>
<td>AS5.2</td>
<td>Alumb. Sala Ventas</td>
</tr>
<tr>
<td>ES5.2</td>
<td>Emerg. Sala Ventas</td>
</tr>
<tr>
<td>AS6</td>
<td>Al. Sala Máquinas - Almacén</td>
</tr>
<tr>
<td>AES6</td>
<td>Emergencias S. maquinas - Almacén</td>
</tr>
<tr>
<td>AS7</td>
<td>Marquesina + rótulos</td>
</tr>
<tr>
<td>AS8</td>
<td>Alumb. Tótem exterior</td>
</tr>
<tr>
<td>AS9</td>
<td>Alumbrado Exterior 1</td>
</tr>
<tr>
<td>AS10</td>
<td>Alumbrado Exterior 2 Logo</td>
</tr>
<tr>
<td>AS11</td>
<td>Alumb. Altillo</td>
</tr>
<tr>
<td>A12</td>
<td>Alumbrado Obrador Panadería</td>
</tr>
<tr>
<td>A13</td>
<td>Iluminación Cámara congelados</td>
</tr>
<tr>
<td>A14</td>
<td>Alumb. Almacén</td>
</tr>
<tr>
<td>A15</td>
<td>Alumb. Ext. Almacén carg/descarga</td>
</tr>
<tr>
<td>A16</td>
<td>Reserva</td>
</tr>
</tbody>
</table>

TOTAL POTENCIA INSTALDA ALUMBRADO = 21.973 W.

8.4. CIRCUITOS DE FUERZA.

Teniendo en cuenta las necesidades propias de este tipo de supermercado y las establecidas por el promotor, se han tenido en cuenta los siguientes receptores:

<table>
<thead>
<tr>
<th>DENOMINACION</th>
<th>POTENCIA INST. (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS1</td>
<td>TOMA ARCON CONGELADOS</td>
</tr>
<tr>
<td>FS2</td>
<td>TOMA ARCON CONGELADOS</td>
</tr>
<tr>
<td>FS3</td>
<td>TOMA ARCON CONGELADOS</td>
</tr>
</tbody>
</table>
FS4 TOMA ARCON CONGELADOS 800
FS5 TOMA ARCON CONGELADOS 800
FS6 TOMA ARCON CONGELADOS 800
FS7 TOMA ARCON CONGELADOS 800
FS8 TOMA RESERVA CONGELADOS 0
FS9 TOMA ARCONES CARNE 400
FS10 TOMA ARCONES CARNE 400
FS11 TOMA ARCONES CARNE 400
FS12 TIMBRE zumbador (p. aseos, oficina y almacén) 500
FS13 TC CAJAS nº 1-3-5 2800
FS14 TC CAJAS nº 2-4-6 2800
FS15 TOMA RESERVA CARNES 0
FS16 Puerta Entrada Clientes 736
FS17 Puerta Entrada Clientes 736
FS18 Puerta Rápida entrada desde sala ventas a almacén 736
FS19 Portillones 200
FS20 Persiana Entrada al exterior 736
FS21 Persiana Entrada al exterior 736
FS22 Persiana Puertas Salida Emergencia 736
FS23 Maniobras Persianas 200
FS24 Persianas Ventanales 736
FS25 Reserva 0
FS26 Central Alarma 400
FS27 TC Oficina / CCTV 2000
FS28 Cámara Congelados 8000
FS29 Reserva 0
FS30 Compuerta Cortafuegos sala ventas a almacén 500
FS31 Protección Maniobra 100
FS32 Bomba Achique 920
FS33 Puerta Cortafuegos 736
FS34 Cámara Frigo Almacén 2000
FS46 Extractor Almacén 1600
DS Descargador Sobretensiones
F34 Horno 1 18400
F35 Horno 2 9200
F36 Horno 3 18400
F37 Cortadora Pan 736
F38 TC Panadería 800
F39 TC Cuarto tecnico/sala personal 2000
F40 Cargador Baterías Almacén 2000
F41 Acumulador ACS 1500
F42 Compactadora 15000
F43 TC Sala de Ventas 800
F44 Extractor Cuarto Eléctrico 500
F45 TC Altillo y Almacén 2000
8.5. GRUPO ELECTROGENO

Se prevé la instalación de un Grupo Electrógeno para Suministro de Socorro, que alimentará los circuitos determinados como suministros preferentes, en caso de fallo de suministro normal un autómata de control será el encargado de conmutar el inversor de redes del C.G.B.T. de la instalación y arrancar el grupo electrógeno, dando servicio a los receptores conectados al Servicio Preferente que alimenta el grupo.

Según la ITC-BT 28 Punto 2.3, el suministro de socorro será como mínimo de un 15% de la potencia contratada. Para la instalación proyectada, la potencia contratada será de 139 kW y por tanto la potencia mínima que ha de suministrar el grupo electrógeno será de 20.470 W.

Los circuitos preferentes a los que dará servicio el Grupo Electrógeno se detallan en el análisis de potencias, y la suma total de las potencias de los circuitos preferentes a los que dará servicio el grupo es de 120.345 W, por lo que se cumple con el requisito del 15% de la potencia contratada. Se elige un grupo de 150 kVA.
El Grupo Electrógeno se ubicará en local habilitado para tal fin, ubicado según se detalla en plano nº 3 Distribución. Dispondrá de rejillas de ventilación, sistema de protección contra incendios y conducto de salida de gases al exterior.

Será de arranque automático, y dispondrá de cuadro de control y accesorios necesarios para su correcto funcionamiento. Las características del grupo seleccionado son:

MARCA: HIMOINSA

Modelo: HFW-160 T5 Diesel

Tensión de Servicio: 40/230 V

Régimen funcionamiento: 1.500 r.p.m.

Potencia de servicio/emergencia: 160/17 kVA – 127/140 kW

En caso de fallo del suministro normal la conmutación al suministro de seguridad, según el punto 2.3. de la Guía BT-28, se debe realizar de forma que se impida el acoplamiento de ambos suministros, el sistema de conmutación automático seleccionado será mediante contactores de enclavamiento mecánico y eléctrico.

Se prevee la instalacion de un segundo Grupo Electrógeno para alimentación de la Bomaba Contraincendios de iguales características técnicas y de 80 kVA de potencia, se encontrará ubicado en altillo técnico junto con el Grupo Electrógeno de socorro.

8.6. SISTEMA DE ALIMENTACIÓN INTERRUMPIDA SAI.

Se dispondrá de suministro ininterrumpido a través de un S.A.I. trifásico monobloque con una potencia nominal de 6 kVA. De este suministro se alimentará aquellos circuitos cuyo funcionamiento es indispensable por motivos de control y seguridad de datos: Circuito cerrado de televisión, central de alarma de incendios, central de seguridad, servidores informáticos de oficina y tomas de corriente de cajas.

La falta de suministro en cualquiera de estos circuitos puede ocasionar graves pérdidas de información o la disminución del grado de seguridad del edificio, incluso cuando la falta de suministro sea de muy corta duración (< 1 segundo). La potencia instalada de todos los
circuits a los que alimenta es de 4.700 W, en potencia reactiva 5.875 kVA, por lo que cumple el SAI seleccionado.

El suministro del SAI se alimentará del suministro Preferente, y éste a su vez del suministro normal. En caso de agotamiento del depósito de combustible del grupo electrógeno y el consecuente fallo del Servicio Preferente, será el S.A.I. el encargado de dar suministro a los circuitos a él conectados, con una autonomía de 10 minutos a plena carga.

9. PROTECCION CONTRA CONTACTOS DIRECTOS.

Protección por aislamiento de las partes activas.

Las partes activas deberán estar recubiertas de un aislamiento que no pueda ser eliminado más que destruyéndolo.

Protección por medio de barreras o envolventes.

Las partes activas deben estar situadas en el interior de las envolventes o detrás de barreras que posean, como mínimo, el grado de protección IP XXB, según UNE20.324. Si se necesitan aberturas mayores para la reparación de piezas o para el buen funcionamiento de los equipos, se adoptarán precauciones apropiadas para impedir que las personas o animales domésticos toquen las partes activas y se garantizará que las personas sean conscientes del hecho de que las partes activas no deben ser tocadas voluntariamente.

Las superfi cies superiores de las barreras o envolventes horizontales que son fácilmente accesibles, deben responder como mínimo al grado de protección IP4X o IPXXD.

Las barreras o envolventes deben fijarse de manera segura y ser de una robustez y durabilidad suficientes para mantener los grados de protección exigidos, con una separación suficiente de las partes activas en las condiciones normales de servicio, teniendo en cuenta las influencias externas.

Cuando sea necesario suprimir las barreras, abrir las envolventes o quitar partes de éstas, esto no debe ser posible más que:
- bien con la ayuda de una llave o de una herramienta;

- o bien, después de quitar la tensión de las partes activas protegidas por estas barreras o estas envolventes, no pudiendo ser restablecida la tensión hasta después de volver a colocar las barreras o las envolventes;

- o bien, si hay interpuesta una segunda barrera que posee como mínimo el grado de protección IP2X o IP XXB, que no pueda ser quitada más que con la ayuda de una llave o de una herramienta y que impida todo contacto con las partes activas.

Protección complementaria por dispositivos de corriente diferencial-residual.

Esta medida de protección está destinada solamente a complementar otras medidas de protección contra los contactos directos.

El empleo de dispositivos de corriente diferencial-residual, cuyo valor de corriente diferencial asignada de funcionamiento sea inferior o igual a 30 mA, se reconoce como medida de protección complementaria en caso de fallo de otra medida de protección contra los contactos directos o en caso de imprudencia de los usuarios.

10. PROTECCION CONTRA CONTACTOS INDIRECTOS.

La protección contra contactos indirectos se conseguirá mediante "corte automático de la alimentación". Esta medida consiste en impedir, después de la aparición de un fallo, que una tensión de contacto de valor suficiente se mantenga durante un tiempo tal que pueda dar como resultado un riesgo. La tensión límite convencional es igual a 50 V, valor eficaz en corriente alterna, en condiciones normales y a 24 V en locales húmedos.

Todas las masas de los equipos eléctricos protegidos por un mismo dispositivo de protección, deben ser interconectadas y unidas por un conductor de protección a una misma toma de tierra. El punto neutro de cada generador o transformador debe ponerse a tierra.

Se cumplirá la siguiente condición:

$$ Ra \times Ia \leq U $$
donde:

- **Ra** es la suma de las resistencias de la toma de tierra y de los conductores de protección de masas.

- **Ia** es la corriente que asegura el funcionamiento automático del dispositivo de protección. Cuando el dispositivo de protección es un dispositivo de corriente diferencial-residual es la corriente diferencial residual asignada.

- **U** es la tensión de contacto límite convencional (50 ó 24V).

10.1.- CALCULO DE PUESTA A TIERRA

Las puestas a tierra se establecen principalmente con objeto de limitar la tensión que, con respecto a tierra, puedan presentar en un momento dado las masas metálicas, asegurar la actuación de las protecciones y eliminar o disminuir el riesgo que supone una avería en los materiales eléctricos utilizados.

La puesta o conexión a tierra es la unión eléctrica directa, sin fusibles ni protección alguna, de una parte del circuito eléctrico o de una parte conductora no perteneciente al mismo, mediante una toma de tierra con un electrodo o grupo de electrodos enterrados en el suelo. Mediante la instalación de puesta a tierra se deberá conseguir que en el conjunto de instalaciones, edificios y superficie próxima del terreno no aparezcan diferencias de potencial peligrosas y que, al mismo tiempo, permita el paso a tierra de las corrientes de defecto o las de descarga de origen atmosférico.

La elección e instalación de los materiales que aseguren la puesta a tierra deben ser tales que:

- El valor de la resistencia de puesta a tierra esté conforme con las normas de protección y de funcionamiento de la instalación y se mantenga de esta manera a lo largo del tiempo.

- Las corrientes de defecto a tierra y las corrientes de fuga puedan circular sin peligro, particularmente desde el punto de vista de solicitudes térmicas, mecánicas y eléctricas.
- La solidez o la protección mecánica quede asegurada con independencia de las condiciones estimadas de influencias externas.

- Contemplen los posibles riesgos debidos a electrólisis que pudieran afectar a otras partes metálicas.

Para la toma de tierra se pueden utilizar electrodos formados por:

- barras, tubos;
- pletinas, conductores desnudos;
- placas;
- anillos o mallas metálicas constituidos por los elementos anteriores o sus combinaciones;
- armaduras de hormigón enterradas; con excepción de las armaduras pretensadas;
- otras estructuras enterradas que se demuestre que son apropiadas.

Los conductores de cobre utilizados como electrodos serán de construcción y resistencia eléctrica según la clase 2 de la norma UNE 21.022.

El tipo y la profundidad de enterramiento de las tomas de tierra deben ser tales que la posible pérdida de humedad del suelo, la presencia del hielo u otros efectos climáticos, no aumenten la resistencia de la toma de tierra por encima del valor previsto. La profundidad nunca será inferior a 0,50 m.

Conductores de tierra.

La sección de los conductores de tierra, cuando estén enterrados, deberán estar de acuerdo con los valores indicados en la tabla siguiente. La sección no será inferior a la mínima exigida para los conductores de protección.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Protegido mecánicamente</th>
<th>No protegido mecánicamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protegido contra la corrosión</td>
<td>Igual a conductores</td>
<td>16 mm² Cu</td>
</tr>
<tr>
<td></td>
<td>protección apdo. 7.7.1</td>
<td>16 mm² Acero Galvanizado</td>
</tr>
</tbody>
</table>
No protegido contra 25 mm² Cu 25 mm² Cu
la corrosión 50 mm² Hierro 50 mm² Hierro

* La protección contra la corrosión puede obtenerse mediante una envolvente.

Durante la ejecución de las uniones entre conductores de tierra y electrodos de tierra debe extremarse el cuidado para que resulten eléctricamente correctas. Debe cuidarse, en especial, que las conexiones, no dañen ni a los conductores ni a los electrodos de tierra.

Bornes de puesta a tierra.

En toda instalación de puesta a tierra debe preverse un borne principal de tierra, al cual deben unirse los conductores siguientes:

- Los conductores de tierra.
- Los conductores de protección.
- Los conductores de unión equipotencial principal.
- Los conductores de puesta a tierra funcional, si son necesarios.

Debe preverse sobre los conductores de tierra y en lugar accesible, un dispositivo que permita medir la resistencia de la toma de tierra correspondiente. Este dispositivo puede estar combinado con el borne principal de tierra, debe ser desmontable necesariamente por medio de un útil, tiene que ser mecánicamente seguro y debe asegurar la continuidad eléctrica.

Conductores de protección.

Los conductores de protección sirven para unir eléctricamente las masas de una instalación con el borne de tierra, con el fin de asegurar la protección contra contactos indirectos.

Los conductores de protección tendrán una sección mínima igual a la fijada en la tabla siguiente:

<table>
<thead>
<tr>
<th>Sección conductores fase (mm²)</th>
<th>Sección conductores protección (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sf < 16</td>
<td>Sf</td>
</tr>
</tbody>
</table>

Escuela Politécnica Superior de Jaén
<table>
<thead>
<tr>
<th>$16 < S_{f} < 35$</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{f} > 35$</td>
<td>$S_{f}/2$</td>
</tr>
</tbody>
</table>

En todos los casos, los conductores de protección que no forman parte de la canalización de alimentación serán de cobre con una sección, al menos de:

- 2,5 mm2, si los conductores de protección disponen de una protección mecánica.

- 4 mm2, si los conductores de protección no disponen de una protección mecánica.

Como conductores de protección pueden utilizarse:

- conductores en los cables multiconductor, o

- conductores aislados o desnudos que posean una envolvente común con los conductores activos, o

- conductores separados desnudos o aislados.

Ningún aparato deberá ser intercalado en el conductor de protección. Las masas de los equipos a unir con los conductores de protección no deben ser conectadas en serie en un circuito de protección.

10.1.1 RESISTENCIA DE LAS TOMAS DE TIERRA.

El valor de resistencia de tierra será tal que cualquier masa no pueda dar lugar a tensiones de contacto superiores a:

- 24 V en local o emplazamiento conductor

- 50 V en los demás casos.

Si las condiciones de la instalación son tales que pueden dar lugar a tensiones de contacto superiores a los valores señalados anteriormente, se asegurará la rápida eliminación de la falta mediante dispositivos de corte adecuados a la corriente de servicio.
La resistencia de un electrodo depende de sus dimensiones, de su forma y de la resistividad del terreno en el que se establece. Esta resistividad varía frecuentemente de un punto a otro del terreno, y varía también con la profundidad.

Se considerará independiente una toma de tierra respecto a otra, cuando una de las tomas de tierra, no alcance, respecto a un punto de potencial cero, una tensión superior a 50 V cuando por la otra circula la máxima corriente de defecto a tierra prevista.

10.1.2. JUSTIFICACIÓN CÁLCULOS DE TIERRAS

Para el cálculo de la resistencia a tierra se ha considerado un terreno de resistividad igual a 300 mΩ.

Puesta a tierra del Edificio (RT): 245 m de longitud de cable de tierra total enterrada debajo del local objeto del protecto, más 9 picas en total de 2 metros cada una, el resultado de nuestra Resistencia a tierra es de 2,12 Ohmios y considerando que nuestra máxima tensión de defecto va a ser 300 mA debido a los diferenciales de fuerza, estamos muy lejos de los límites que nos impone el reglamento. Dado que se dispone de un SAI por motivos de seguridad, el cual en sus especificaciones técnicas aconseja que la resistencia a tierra sea menor de 5 Ohmios también se cumple.

Puesta a tierra del Grupo Electrógeno (RG): 20 m de longitud de cable de tierra total enterrada debajo del local objeto del protecto, más 4 picas en total de 2 metros cada una, el resultado de nuestra Resistencia a tierra es de 16,66 Ohmios.

Para la puesta a tierra del GE, se deberá cumplir con el REBT en su ITC-BT 021 y ITC-BT034, así como las prescripciones recogidas en la NTP 142 del Instituto de Seguridad e Higiene en el trabajo.

El conjunto formado por las masas del grupo y de todos los equipos auxiliares ligados a él estarán conectados a una toma de tierra eléctricamente independiente (RG) de la toma de tierra general (RT). Asimismo se comprobará que ninguna de estas masas esté en contacto con la toma de tierra general o con masas conectadas a ella. En caso contrario deberán aislarse.
11. PROTECCION CONTRA SOBRETENSIONES.

Los equipos eléctricos y electrónicos son indispensables en las actividades comerciales, empresas y servicios. Tales dispositivos se encuentran conectados a la red de suministro eléctrico y frecuentemente intercambian datos y señales a través de líneas de comunicación y suelen ser sensibles a perturbaciones. Estas redes de interconexión son precisamente el canal de propagación de las sobretensiones.

La protección contra el rayo y las sobretensiones, además de garantizar la seguridad de personas, bienes y equipos, asegura la continuidad de servicio de las instalaciones y responde a los criterios de eficiencia energética. Proteger contra sobretensiones alarga la vida útil de los equipos en más de un 20% y permite reducir notablemente el volumen de residuos electrónicos.

Las sobretensiones transitorias son picos de tensión que alcanzan valores de decenas de kilovoltios y cuya duración es del orden de microsegundos. A pesar de su corta duración, causan la destrucción de los equipos conectados a la red provocando daños graves o destrucción e interrupción del servicio.

Las sobretensiones permanentes son aumentos de tensión superiores al 10% de la tensión nominal de duración indeterminada. La alimentación de equipos con una tensión superior a aquella para la que han sido diseñados puede generar sobrecalentamiento de los equipos, reducción de la vida útil, incendios, destrucción de los equipos e interrupción del servicio. (Ref 4. Guía selección de protecciones CIRPROTEC).

Un dispositivo de protección contra sobretensiones transitorias actúa como un conmutador controlado por tensión y se halla instalado entre los conductores activos y tierra en paralelo a los equipos a proteger. Cuando la tensión de la red es inferior a su tensión de activación, el protector actúa como un elemento de alta impedancia, de forma que por él no circula intensidad. Por el contrario, cuando la tensión de red es superior a la tensión de activación, el protector actúa como un elemento de impedancia próxima a cero, derivando la sobretensión a tierra y evitando que ésta afecte a los receptores.
En la selección de un dispositivo de protección contra sobretensiones transitorias deben considerarse la tipología y la tensión nominal de la red eléctrica. Además de la polaridad de la protección, estas características condicionarán el valor de la tensión máxima de servicio de ésta y el margen de seguridad que debe contemplarse por encima de la tensión nominal de la red.

Por otro lado, dependiendo de la exposición de la instalación a los efectos del rayo y las sobretensiones transitorias, serán necesarios dispositivos de protección con diferentes capacidades de descarga.

Otro punto a considerar a la hora de seleccionar el dispositivo de protección es su nivel de protección en tensión, que deberá ser inferior a la tensión máxima soportada por los equipos a proteger.

Los parámetros de un protector son:
- **Up**: nivel de protección. Máximo valor de tensión residual entre los bornes del dispositivo de protección durante la aplicación de una corriente de cresta.
- **In**: corriente nominal. Corriente de cresta en onda 8/20 μs que el dispositivo de protección puede soportar en 20 ocasiones sin llegar a final de vida.
- **Imáx**: intensidad máxima de descarga. Corriente de cresta en onda 8/20 μs que el dispositivo de protección puede soportar sin llegar al final de vida.
- **Uc**: tensión máxima de servicio. Máxima tensión eficaz o en corriente continua que puede aplicarse de forma permanente a los bornes del dispositivo de protección.
- **Iimp**: corriente de impulso. Corriente de cresta en onda 10/350 μs que el dispositivo de protección puede soportar sin llegar a final de vida.

Según la norma internacional IEC 61643-11, los dispositivos de protección se clasifican en tipos según su capacidad de descarga:

- **Tipo 1**: Protectores con capacidad para derivar a tierra corrientes altas en curva 10/350 μs. Tienen un nivel de protección Up alto. Simulan la corriente que se produce en caso de un impacto directo de rayo. Deben ser acompañados de protectores tipo 2. Están concebidos para
utilización en cuadros generales de instalaciones donde el riesgo de impacto de rayo es elevado.

- Tipo 2. Protectores con capacidad para derivar a tierra corrientes altas en la curva 8/20μs. Tienen un nivel de protección Up medio. Simulan la corriente que se produce en caso de una conmutación o de un impacto de rayo sobre la línea de distribución o en sus proximidades. Están concebidos para la utilización en subcuadros generales de instalaciones donde el riesgo de impacto de rayo es reducido.

- Tipo 3. Protectores con capacidad para derivar a tierra corrientes medias 1,2/50 μs – 8/20 μs, corriente y tensión que puede llegar a los equipos a proteger.

Según el REBT, instrucción ITC-BT 23, Guía BT 23 y el artículo 16.3, la norma UNE EN 50550 publicada el 16 de marzo de 2011 y las normas técnicas de la compañía suministradora (SEVILLANA ENDESA), la instalación necesita protección contra sobretensiones.

Esta instalación dispone de pararrayos y, por tanto, se elige una protección combinada contra sobretensiones tipo V-CHECK 4R de la casa comercial CIRPROTEC. El pararrayos dispone de una toma de tierra independiente menor a 10 Ω, que se recomienda conectar a la tierra general del edificio para unificar potenciales.

Para la protección de los circuitos de SAI, se elige un protector contra sobretensiones transitorias tipo 2, CS4-15/400 3 polos + N, 15 kA de la casa comercial CIRPROTEC.

12. PROTECCION CONTRA SOBREINTENSIDADES.

Todo circuito estará protegido contra los efectos de las sobreintensidades que puedan presentarse en el mismo, para lo cual la interrupción de este circuito se realizará en un tiempo conveniente o estará dimensionado para las sobreintensidades previsibles.

Las sobreintensidades pueden estar motivadas por:

- Sobrecargas debidas a los aparatos de utilización o defectos de aislamiento de gran impedancia.
- Cortocircuitos.

- Descargas eléctricas atmosféricas.

a) Protección contra sobrecargas. El límite de intensidad de corriente admisible en un conductor ha de quedar en todo caso garantizada por el dispositivo de protección utilizado.

 El dispositivo de protección podrá estar constituido por un interruptor automático de corte omnipolar con curva térmica de corte, o por cortacircuitos fusibles calibrados de características de funcionamiento adecuadas.

b) Protección contra cortocircuitos. En el origen de todo circuito se establecerá un dispositivo de protección contra cortocircuitos cuya capacidad de corte estará de acuerdo con la intensidad de cortocircuito que pueda presentarse en el punto de su conexión. Se admite, no obstante, que cuando se trate de circuitos derivados de uno principal, cada uno de estos circuitos derivados disponga de protección contra sobrecargas, mientras que un solo dispositivo general pueda asegurar la protección contra cortocircuitos para todos los circuitos derivados. Se admiten como dispositivos de protección contra cortocircuitos los fusibles calibrados de características de funcionamiento adecuadas y los interruptores automáticos con sistema de corte omnipolar.

La norma UNE 20.460-4-43 recoge todos los aspectos requeridos para los dispositivos de protección. La norma UNE 20.460-4-473 define la aplicación de las medidas de protección expuestas en la norma UNE 20.460-4-43 según sea por causa de sobrecargas o cortocircuito, señalando en cada caso su emplazamiento u omisión.

13. BATERIA DE CONDENSADORES

Con objeto de compensar la energía reactiva y el facto de potencia de nuestra instalación, se instalará en el cuarto técnico una batería de condensadores de capacidad, tensión de funcionamiento, regulador y número de escalones suficiente para la potencia total instalada. Debidamente ensayada conforme las normas IEC61439-1 y 2, IEC 61921.

Según cálculos del Anexo de cálculos 1, se selecciona una batería de condensadores de 63 kVA marca Schneider modelo Varset, con interruptor automático y filtro de armónicos.
14. BASES DE CÁLCULO.

14.1.- Tensión nominales y caídas de tensión admisibles

La tensión nominal del suministro será de 400 V entre fases y 230 V entre fase y neutro.

Para la derivación individual, la máxima la caída de tensión admisible será del 1,5 % al tratarse de un solo usuario y no existir LGA (REBT ITC BT-14; ITC BT-15)

Respecto a las instalaciones interiores, las caídas de tensión máximas admisibles, según la instrucción ITC BT-19 punto 2.2.2 serán del 3 % para alumbrado y del 5 % para los demás usos.

Esta caída de tensión podrá compensarse entre la de la instalación interior y la de las derivaciones individuales, de forma que la caída de tensión total sea inferior a la suma de los valores límites especificados para ambas, según el tipo de esquema utilizado.
Se toma como origen de la instalación, el arranque de los distintos circuitos a partir del cuadro general de mando y protección.

Por tanto, las caídas de Tensión máximas admisibles entre el origen y cualquier punto de la instalación, serán:

- Alumbrado: $U_a = 0,03 \times U = 0,03 \times 230 = 6,9 \, V$

- Fuerza: $U_f = 0,05 \times U = 0,05 \times 400 = 20 \, V$

Las expresiones básicas para el cálculo de intensidades y de las caídas de tensión, en valor porcentual, son las siguientes:

Sistema Trifásico

$$I \, amp (A) = \frac{P_e}{1,732 \times U \times \cos \varphi \times R}$$
e voltios (V) = (L x P / μ x S x U x n x R) + (L x P x Xu x Senφ / 1000 x U x n x R x Cosφ)

Sistema Monofásico:

I amp (A) = Pc / U x Cosφ x R

e voltios (V)= (2 x L x Pc / μ x U x n x S x R) + (2 x L x Pc x Xu x Senφ / 1000 x U x n x R x Cos φ)

Siendo:
Pc = Potencia de Cálculo en Watios.
L = Longitud de Cálculo en metros.
e = Caída de tensión en Voltios.
μ = Conductividad del cobre (56)
I = Intensidad en Amperios.
U = Tensión de Servicio en Voltios (Trifásica ó Monofásica).
S = Sección del conductor en mm².
Cos φ = Factor de potencia.
R = Rendimiento. (Para líneas motor).
n = Nº de conductores por fase.
Xu = Reactancia por unidad de longitud en mW/m.

Para el cálculo de la caída de tensión total de cada circuito:

Caída de tension Total circuito: cdt (LAG + DI) + cdt (circuito)

En los circuitos de las luminarias fluorescentes, para su cálculo, se toma como factor de potencia la unidad, ya que según la ITC BT-44, éste ya se considera al aplicar el factor 1,8, y en motores 1,25

14.2.- Calculo de Secciones de los conductores

Para determinar la sección de los conductores de una línea se ha tenido en cuenta los criterios de:
- Calentamiento.
- Caída de tensión.

Determinando el valor de la sección el más desfavorable de ellos. Partiendo de la potencia que debe suministrar cada línea, se calcularán la intensidad y se optará por una sección determinada de acuerdo con la ITC BT-07 y la ITC BT-19 para cables con aislamiento hasta 1.000V. Por este método se tiene en cuenta el calentamiento.

Con una sección ya determinada se calculará la Caída de Tensión. Si ésta es inferior a los valores calculados en el apartado 2.1.2 la elección ha sido correcta.

14.3.- Calculo de Cortocircuito

El cálculo por corrientes de cortocircuito se tendrá en cuenta para determinar el poder de corte de los interruptores automáticos que protegen a los conductores. Según la Guía BT Anexo 3, Edición: sep 03, Revisión 1 para el cálculo de las corrientes de cortocircuito se puede emplear la siguiente fórmula simplificada:

\[I_{cc} = 0.8 \frac{V}{R} \]

Siendo:
- \(I_{cc} \): Intensidad de cortocircuito máxima en el punto considerado
- \(V \): Tensión de alimentación fase neutro (230 V)
- \(R \): Resistencia del conductor de fase entre el punto considerado y la alimentación

Para el cálculo de la resistencia del conductor de fase se utiliza la fórmula siguiente:

\[R = \varphi \left(\frac{L}{S} \right) \]

Siendo:
- \(\varphi \): Resistividad del cobre a 20°C
- \(L \): Longitud total de la línea en m
- \(S \): Sección de la línea en mm²
El valor de Icc en el origen de la instalación se recomienda por parte de la compañía suministradora de 12 kA.

15. JUSTIFICACION DE LA SOLUCION ADOPTADA.

15.1. ACOMETIDA.

Es la parte de la instalación de la red de distribución que alimenta la Caja General de Protección (CGP), siendo propiedad de la Compañía Suministradora y por lo tanto su diseño debe basarse en las normas particulares de esta.

La acometida a la parcela en estudio, se realizará desde el Centro de Transformación perteneciente a la Compañía Suministradora situado junto a la parcela, y discurrirá bajo tubo enterrada hasta la Caja General de Protección, ubicada en nicho de cerramiento en la linde de parcela según se detalla en planos. Caja General de Protección que en nuestro caso al tratarse de un solo usuario según la ITC-BT13 pto 2, será tambien de medida.

Los conductores serán de Aluminio de 240 mm2 de sección 0,6/1 KV con aislamiento RZ1-K y las condiciones de instalación cumpliran con las prescripciones de la ITC-BT 07. Se instalarán bajo tubo de PE-AD de 225 mm de sección.

15.2. INSTALACION DE ENLACE. ESQUEMA.

Parte de la instalación que se inicia en el final de la acometida y termina en los Dispositivos Generales de Mando y Protección (DGMP) del Cuadro General de Mando y Protección (CGMP) uniendo, la Caja General de Protección, incluida esta, con las instalaciones interiores o receptoras del usuario.

Estas instalaciones se situarán y discurrirán siempre por lugares de uso común y quedarán en propiedad del usuario, que se responsabilizará de su conservación y mantenimiento.

Al tratarse de un solo usuario, el esquema de la instalación será el indicado y las partes que constituyen la instalación de enlace son:
- Caja General de Protección y Medida (CGP) incluyendo los fusibles de seguridad.

- Equipo de medida (EM)

- Derivación individual (DI)

- Caja para interruptor de Control de Potencia (ICP).

- Dispositivos Generales de Mando y Protección (DGMP)

15.3. CAJA GENERAL DE PROTECCIÓN Y MEDIDA.

La Caja General de Protección y Medida (CGPM), señala el principio de la propiedad de las instalaciones de los usuarios (Art. 15.2 del REBT). Su esquema y características, responderán a lo indicado en las Especificaciones Técnicas de la Compañía Suministradora. Las disposiciones generales de este tipo de caja quedan recogidas en la ITC-BT-13.

Estará ubicada en nicho de cerramiento de obra, junto a la entrada de vehículos. Cumplirán con la Norma UNE-EN 60.439-1, con un grado de impermeabilidad según UNE-EN 60.439-3. El grado de protección será de IP43 e IK09 y dispondrá de una puerta metálica con grado de protección IK10 (UNE – EN 50.102), además de cerradura normalizada por la Compañía Suministradora. La parte inferior se situará como mínimo a una altura de 30 cm del suelo y los dispositivos de lectura de los equipos de medida deberán estar instalados a una altura comprendida entre 0,70 y 1.80 m de altura.

La envolvente deberá disponer de ventilación y el material transparente para la lectura será resistente a la acción de los rayos.

La intensidad nominal de la Caja General de Protección será de 250 A, y se instalarán en su interior los elementos de protección de la línea al cuadro general, formados por fusibles de a.p.r. de 250 A en bases de 400 A. con un poder de corte mínimo 100 kA.

El Equipo de Medida, al tratarse de un solo usuario, se colocará en el interior de la Caja General de Protección, adecuado para la potencia solicitada y verificado por la Compañía Suministradora.
Dispondrán de fusibles de seguridad en cada uno de los hilos de fase y que tendrán la adecuada capacidad de corte en función de la máxima intensidad de cortocircuito que pueda presentarse en ese punto y que dejará precintados. Dispondrán también de un borne de conexión para el conductor neutro.

En este caso, los fusibles de seguridad son coincidentes con los fusibles de la CGP, descritos en el apartado anterior. Se dispondrá de:

- 1 Interruptor general automático de corte omnipolar de $4 \times 250 \ A$.
- Transformadores de intensidad, relación 500/5.
- Amperímetro, con conmutador.
- Voltímetro, con conmutador.

15.4. DERIVACIÓN INDIVIDUAL.

La derivación individual se inicia en el embarrado general de la CGP y comprende los fusibles de seguridad, el conjunto de medida y los dispositivos generales de mando y protección, según ITC-BT-15, permitiendo una c.d.t. max. de 1 %.

Se ejecutará con conductores unipolares aislados en el interior de tubos empotrados, para el caso en estudio, compuesta por conductores de aislamiento RZ1-K (AS), de sección 4x240 TT x 120mm2 Cu 0,6/1 kV XLPE+Pol KZ1. Siendo conductores no propagadores de incendio y con emisión de humos y opacidad reducida según UNE-21123 y UNE 211002.

Discurrirá enterrada bajo tubo protector que tendrá las siguientes características:

- Material: PVC
- Diámetro: 200mm
- Número: Dos en paralelo, uno de ellos vacío.

La canalización de la misma estará constituida por tubos de características de acuerdo a lo especificado en norma UNE-EN 50.086 2-4 y sus características mínimas estarán de

Escuela Politécnica Superior de Jaén
acuerdo con la tabla 9 “Características mínimas para los tubos en canalizaciones enterradas”, incluida en la ITC BT 021, del REBT.

El tubo aislante flexible del diámetro que se ha especificado anteriormente, será estanco, estable hasta 60ºC, no propagará la llama de acuerdo con las normas UNE-EN 50085-1 y UNE-EN 50086-1, teniendo un grado de protección 7 por ser flexible.

15.5. DISPOSITIVOS GENERALES DE MANDO Y PROTECCION.
INTERRUPTOR CONTROL DE POTENCIA.

Los dispositivos generales de mando y protección, se situarán lo más cerca posible del punto de entrada de la derivación individual en el local o vivienda del usuario. En viviendas y en locales comerciales e industriales en los que proceda, se colocará una caja para el interruptor de control de potencia, inmediatamente antes de los demás dispositivos, en compartimento independiente y precintable. Dicha caja se podrá colocar en el mismo cuadro donde se coloquen los dispositivos generales de mando y protección.

Los dispositivos generales e individuales de mando y protección serán, como mínimo:

- Un interruptor general automático de corte omnipolar, que permita su accionamiento manual y que esté dotado de elementos de protección contra sobrecarga y cortocircuitos. Este interruptor será independiente del interruptor de control de potencia.

- Un interruptor diferencial general, destinado a la protección contra contactos indirectos de todos los circuitos; salvo que la protección contra contactos indirectos se efectúe mediante otros dispositivos de acuerdo con la ITC-BT-24.

- Dispositivos de corte omnipolar, destinados a la protección contra sobrecargas y cortocircuitos de cada uno de los circuitos interiores de la vivienda o local.

- Dispositivo de protección contra sobretensiones, según ITC-BT-23, si fuese necesario.
Si por el tipo o carácter de la instalación se instalase un interruptor diferencial por cada circuito o grupo de circuitos, se podría prescindir del interruptor diferencial general, siempre que queden protegidos todos los circuitos. En el caso de que se instale más de un interruptor diferencial en serie, existirá una selectividad entre ellos.

15.6. **INSTALACION INTERIOR.**

15.6.1. **CUADRO GENERAL DE MANDO Y PROTECCIÓN (CGMP).**

Se situará en el interior del local, en el lugar indicado en los planos dentro de la oficina de la tienda, la cual no es en ningún caso accesible al público. Será de chapa de acero accesible por delante con puerta y llave, y estará compuesto por los siguientes dispositivos generales de Mando y Protección (DGMP) y demás elementos según se detallan en el esquema unifilar: Plano nº

El poder de corte de sus elementos constituyentes será de al menos 15 kA para el interruptor general automático magnetotérmico de corte omnipolar, y para el resto de interruptores automáticos magnetotérmicos la intensidad de cortocircuito será de 15, 10 y 4,5 kA.

Además de los elementos de protección, el cuadro general llevará elementos indicadores de la existencia de tensión, su estructura metálica estará debidamente conectada a tierra; así mismo los automáticos incluirán rotulación de baquelita clara y comprensible de el/los elemento/s que protegen.

Todos los elementos de señalización y medida irán protegidos por fusible seccionador.

En los planos adjuntos está representado el esquema de este cuadro, indicándose en él el calibre de los automáticos, secciones de conductores, circuitos a que protegen, etc.

15.7. **TUBOS PROTECTORES, CONDUCTORES Y CANALIZACIONES.**

Los tubos protectores a emplear serán de PVC flexible empotrado, del tipo "no propagador de llama", para montaje empotrado o sobre falso techo y de PVC rígido blindado para montaje superficial. Los diámetros de estos tubos estarán de acuerdo con el número de
conductores que se vayan a alojar en ellos y de las secciones de los mismos. En las derivaciones, cambios de dirección, empalmes y conexiones, se colocarán cuantas cajas de distintos tipos y dimensiones (vistas) sean necesarias, de acuerdo con la importancia de cada caso.

Para determinar el diámetro de los tubos y el número de conductores que pueden alojar, se recurrirá a lo dictado en la ICT BT 21 del Reglamento Electrotécnico para Baja Tensión.

CANALIZACIONES FIJAS

Las canalizaciones deben realizarse según lo dispuesto en las ITC BT-19, ITC BT-20, ITC BT-21 e ITC BT-28. Los cables eléctricos a utilizar en las instalaciones de tipo general y en el interior de cuadros eléctricos en este tipo de locales, serán no propagadores del incendio y con emisión de humos y opacidad reducida. Los cables con características equivalentes a las de la norma UNE 21.123 parte 4 o 5; o la norma UNE 211002 (según la tensión asignada del cable), cumplen con esta prescripción.

CONDUCTORES.

Todos los conductores que vayan a emplearse en esta instalación serán en todo momento de cobre unipolar y con aislamiento seco de doble capa.

Los conductores a utilizar serán Exzhellent-XXI de General Cable en cobre clase 5.

Denominación técnica ES07Z1-K. *Libre de halógenos, no propagadores del incendio y sin emisión de humos opacos.*

Para alimentación de los circuitos de grupo contraincendios y alarma contraincendios serán además del tipo AS+ de seguridad reforzada.

En la sala de ventas, se utilizarán cables con conductores flexibles de cobre con aislamiento RZ1-K 06/1kV tendidos sobre bandeja MTP o bajo tubo de PVC no propagador de la llama.
En el almacén y sala de máquinas-altillo las canalizaciones serán estancas constituidas por conductores flexibles de cobre con aislamiento RZ1-K 0,6/1kV, tendidos bajo tubo de PVC no propagador de la llama en montaje superficial.

En el cuarto técnico, oficina, sala de descanso, aseos y vestuarios las canalizaciones estarán constituidas por conductores flexibles de cobre con aislamiento H07Z1-K o RZ1-K 0,6/1kV tendidos bajo tubo de PVC no propagador de la llama en montaje empotrado sobre el falso techo o bien con bandeja MTP.

Estos conductores deberán ser fácilmente identificados, especialmente en lo que respecta a los conductores de neutro y de protección.

Estas identificaciones se realizarán por los colores que presenten los aislamientos, tal y como se describen a continuación.

En la instalación que nos ocupa y en los distintos circuitos proyectados, uno de los conductores será de color azul claro, definiendo el conductor neutro. Igualmente el conductor de protección será identificado por doble color amarillo-verde, el resto de los mismos o conductores polares, serán marrón, negro o gris, según el número de ellos que empleen en la canalización.

Las secciones de estos conductores y que más adelante veremos en los cálculos eléctricos, permanecerán constantes en todo su recorrido, no efectuándose empalme alguno en el interior de los tubos ni cambios de dirección a no ser que se realicen en las correspondientes cajas de conexión.

Los empalmes, además de ir ejecutados en las cajas ya referidas, serán ejecutados con pulcritud y seguridad, empleando para ello y sin ninguna excepción bornas o fichas para su conexionado.

15.8. NIVEL DE AISLAMIENTO.

Los conductores anteriormente citados, estarán aislados con polietileno reticulado, siendo los niveles mínimos de aislamiento de 1000 voltios.
15.9. CIRCUITOS.

Todos los receptores o conjuntos de estos que se instalen en el local, tanto en alumbrado como fuerza motriz, serán alimentados y a la vez controlados con circuitos totalmente independientes desde los cuadros de maniobra que se proyectan al efecto.

El número de estos circuitos para cada uso que se han previsto, así como los receptores que alimentará, se puede ver de una manera clara y concreta por medio de los esquemas eléctricos que se han proyectado al efecto para los cuadros mencionados. Estos cuadros irán en armarios de dimensiones adecuadas en donde se instalaran todos los elementos de control previstos, tales como interruptores magnetotérmicos y diferenciales de distintas intensidades, 30 y 300 mA. (ver esquema eléctrico del cuadro C.G.M.P.).

15.10. PROTECCIONES.

Esta instalación dispondrá de los siguientes tipos de protecciones eléctricas:

- Seccionador-fusibles en el armario de contadores, con cartuchos fusibles de a.p.r. de 250 A, montados en base de 400 A, para protección de la derivación individual.

- Interruptor automático general a la entrada de cada cuadro, general o secundario.

- Interruptores automáticos magnetotérmicos para protección de los diferentes circuitos establecidos.

- Interruptores diferenciales de 30 ó 300 mA para protección contra contactos indirectos, según los valores que se indican en los esquemas eléctricos.

15.11. ILUMINACION.

Dado el tipo de actividad y la iluminación del local se dota al mismo con sistemas de iluminación que aseguran los siguientes niveles de iluminación:

Los tipos de luminarias elegido para su utilización son los modelos siguientes:

Zona de sala de ventas:
- Iluminación media: 500 lux, conseguida con los siguientes aparatos de iluminación cuyas características se recogen en las fichas del fabricante:

Luminarias fluorescente PHILIPS TTX260 2XTL5 49W HFP CP –WB y luminarias PHILIPS TTX260 2xTL5 45W HFP CP –WB o similar.

Oficina y sala de descanso:

- Iluminación media: 500 lux.

Luminaria para empotrar marca PHILIPS TBS260 3xTL5 14W HFS C6 –WB o similar.

Almacén y obrador panadería:

- Iluminación media: 300 lux.

Luminaria PHILIPS TCW 210 1XTL-D58 HFP.

Aseos:

Luminaria DOWLA PHILIPS FBS120 1xPL-R/4P 17F-P.

Muelle Carga/descarga y cuarto eléctrico:

Luminaria estanca T5/54W PHILIPS PACIFIC TCW216 1XTL5 54W HFP

Cámara Frigorífica:

Luminaria PHILIPS WT 460 C LED22S/840 PSU WB L130 con IP66 IK08.

Zona carros y entrada:

Luminaria PHILIPS LUXSPACE COMPACT BBS490 40000K PG o similar.

Los resultados del cálculo de la iluminación se detallan en el anexo de cálculo Iluminación.
15.12. ALUMBRADOS ESPECIALES.

Se dispondrá de aparatos de aluminrado de señalización y emergencia. Estos aparatos autónomos se alimentarán de la red para proceder a su carga mediante circuitos independientes. Estos circuitos estarán constituidos por tres conductores (uno será la tierra) de cobre de hilo rígido de 2,5 mm². de sección, aislados con polietileno reticulado. para una tensión nominal de 1000 v. Se protegerá mediante un interruptor automático magnetotérmico de 10 Amperios. Dichos equipos garantizarán que en caso de ausencia de corriente eléctrica, iluminarán la salida con un nivel de 1 lux. durante una hora.

Cuando el suministro habitual del alumbrado de señalización falle, o su tensión baje a menos del 70% de su valor nominal, la alimentación del aluminrado de señalización deberá pasar automáticamente al segundo suministro.

Los aparatos autónomos se situarán según se define en la documentación gráfica. Los que se sitúan en las puertas de acceso llevarán rotulación de SALIDA. Deberán señalar la situación de puertas, pasillos y salida del local durante todo el tiempo que permanezca con público.

La instalación cumplirá lo dispuesto en la Instrucción ITC BT 028 del Reglamento Electrotécnico de Baja Tensión para este tipo de aluminrado.

Las canalizaciones del alumbrado de emergencia se instalarán como mínimo a 5 cm de otras canalizaciones empotradas y a 20 cm cuando se instalen en la superficie.

En el ANEXO DE CÁLCULO que se adjunta, detallan y se explica los diferentes circuitos que componen la instalación.

16. JUSTIFICACION DE LA SOLUCION ADOPTADA.

La instalación que se proyecta se ajusta a la reglamentación que le afecta. Concretamente:

16.1. Reglamento Electrotécnica para Baja Tensión.

La previsión de cargas del local se ha realizado en base a la carga real que va a soportar el local, valor que ha resultado ser de 160.542 W, valor mayor que el establecido en esta ITC, que establece que un mínimo de 100 W por metro cuadrado y planta, con un mínimo por local de 3.450 W a 230 V y coeficiente de simultaneidad 1.

16.1.2.- ITC-BT-12. Instalaciones de enlace.

Es la parte de la instalación que se inicia en el final de la acometida y termina en los Dispositivos Generales de Mando y Protección (DGMP) del Cuadro General de Mando y Protección (CGMP) uniendo, la Caja General de Protección, incluida esta, con las instalaciones interiores o receptoras del usuario.

Estas instalaciones se situarán y discurrirán siempre por lugares de uso común y quedarán en propiedad del usuario, que se responsabilizará de su conservación y mantenimiento.

Al tratarse de un solo usuario, el esquema de la instalación será el indicado cumpliendo con esta ITC.

Al tratarse de un solo suministro, y no existir línea general de alimentación, se ha simplificado la instalación colocando un único elemento, la Caja General de Protección y Medida, la citada caja proyectada cumple todas las especificaciones de esta ITC.

Para el caso

Estará ubicada en nicho de cerramiento de obra, junto a la entrada de vehículos. Cumplirán con la Norma UNE-EN 60.439-1, con un grado de impermeabilidad según UNE-EN 60.439-3. El grado de protección será de IP43 e IK09 y dispondrá de una puerta metálica con grado de protección IK10 (UNE – EN 50.102), además de cerradura normalizada por la Compañía Suministradora. La parte inferior se situará como mínimo a una altura de 30 cm del suelo y los dispositivos de lectura de los equipos de medida deberán estar instalados a una altura comprendida entre 0,70 y 1.80 m de altura.
La envolvente deberá disponer de ventilación y el material transparente para la lectura será resistente a la acción de los rayos.

La derivación individual proyectada cumple todas las especificaciones de esta ITC.

Concretamente:

- Está constituida por conductores aislados en el interior de tubos empotrados.

- Es totalmente independiente de las derivaciones individuales correspondientes a otros usuarios.

- Los tubos empleados tienen una sección nominal que permite ampliar la sección de los conductores inicialmente instalados en un 100%.

- El diámetro empleado en los tubos es superior al mínimo permitido de 32 mm.

- Se ha dispuesto un tubo de reserva para poder atender fácilmente posibles ampliaciones. las derivaciones individuales

- Discurre por lugares de uso común

- Se ha realizado en configuración trifásica con tres conductores de fase, un neutro exclusivo para la derivación individual y un conductor de protección conexionado en el propio cuarto de contadores a la red general de tierra del edificio.

- Los cables no presentan empalmes y su sección es uniforme, exceptuándose en este caso las conexiones realizadas en la ubicación de los contadores y en los dispositivos de protección.

- Los conductores a utilizar serán de cobre con una tensión asignada 450/750 V.

- Los cables y sistemas de conducción de cables se instalan de manera que no se reduzcan las características de la estructura del edificio en la seguridad contra incendios.
Los cables proyectados son no propagadores del incendio y con emisión de humos y opacidad reducida.

La sección proyectada es de 240 mm².

La instalación que se proyecta cumple con lo especificado en esta ITC, concretamente:

- El contador y demás dispositivos para la medida de la energía eléctrica se instalan bajo la misma envolvente de la Caja General de Protección y Medida.

- La ubicación y composición de estos elementos permiten la lectura de forma directa de los contadores e interruptores horarios, así como la del resto de dispositivos de medida, cuando así sea preciso.

- La derivación individual lleva asociado en su origen su propia protección compuesta por fusibles de seguridad antes del contador que se colocarán en cada uno de los hilos de fase o polares que van al mismo, teniendo la adecuada capacidad de corte en función de la máxima intensidad de cortocircuito que pueda presentarse en ese punto y estarán precintados por la empresa distribuidora.

- Los cables serán de 10 mm² para poder atender la previsión de cargas y caídas de tensión.

- Los cables serán de una tensión asignada de 450/750 V y los conductores de cobre, de clase 2 según norma UNE 21.022, con un aislamiento seco, extruido a base de mezclas termoestables o termoplásticas; y se identificarán según los colores prescritos en la ITC MIE-BT-26.

- Los cables son no propagadores del incendio y con emisión de humos y opacidad reducida.

- Se dispone del cableado necesario de sección 1,5 mm² para los circuitos de mando y control con el objetivo de satisfacer las disposiciones tarifarias vigentes.

El Cuadro General de Baja Tensión que se proyecta cumple con lo establecido en esta ITC, concretamente:

· Se ha situado lo más cerca posible del punto de entrada de la derivación individual en el local del usuario, cerca también de la puerta de entrada a éste.

· El cuadro llevará incorporado una cerradura con llave para que los dispositivos de mando y protección no sean accesibles al público en general.

· La altura a la cual se situarán los dispositivos generales e individuales de mando y protección de los circuitos, medida desde el nivel del suelo, es de 1 m desde el nivel del suelo.

· Los dispositivos generales e individuales de mando y protección, cuya posición de servicio es vertical, se ubican en el interior de un solo cuadro de distribución de donde parten todos los circuitos interiores.

· La envolvente del cuadro se ajusta a las normas UNE 20.451 y UNE-EN 60.439 - 3, con un grado de protección mínimo IP 30 según UNE 20.324 e IK07 según UNE-EN 50.102.

· La envolvente para el interruptor de control de potencia es precintable y sus dimensiones están de acuerdo con el tipo de suministro y tarifa a aplicar.

· Los dispositivos generales e individuales de mando y protección que se han proyectado son en número y características mayores al mínimo establecido en esta ITC.

· El interruptor general automático de corte omnipolar proyectado tiene un poder de corte suficiente para la intensidad de cortocircuito que pueda producirse en el punto de su instalación, en todo caso mayor del mínimo establecido de 4.500 A.

· Los demás interruptores automáticos y diferenciales proyectados se han diseñado para poder resistir las corrientes de cortocircuito que puedan presentarse en el punto de su instalación. La sensibilidad de los interruptores diferenciales responderá a lo señalado en la Instrucción ITC-BT-24.
· Los dispositivos de protección contra sobrecargas y cortocircuitos de los circuitos interiores son de corte omnipolar y tendrán los polos protegidos que corresponda al número de fases del circuito que protegen. Sus características de interrupción están de acuerdo con las corrientes admisibles de los conductores del circuito que protegen.

La instalación de puesta a tierra que se ha proyectado incluye los conductores de protección utilizados para unir eléctricamente las masas de la instalación a la tierra general del edificio para asegurar la protección contra contactos indirectos.

En consonancia con lo establecido en la presente ITC, las secciones de los conductores de protección cumplirán con la Tabla 2 de la citada Instrucción.

Para secciones de conductor activo < 16 mm2, la sección del conductor de protección será igual que la del conductor activo, hasta 35 mm2 será de 16 mm2 y para secciones de conductor activo mayores de 35 mm2, la sección del conductor de protección será la mitad de la misma.

La instalación interior que se proyecta cumple con lo establecido en esta ITC, concretamente:

· Los conductores que se proyectan son de cobre y estarán siempre aislados.

· En el anexo correspondiente se han calculado las secciones de los conductores con los siguientes criterios:
 ➢ La caída de tensión entre el origen de la instalación interior y cualquier punto de utilización sea, menor del 3 % para alumbrado y del 5 % para los demás usos.
 ➢ Se ha dispuesto que la sección del neutro sea igual a la de las fases.
 ➢ La intensidad de cada circuito sea menor que las intensidades máximas admisibles dispuestas en esta ITC.
 ➢ La sección de los conductores de protección será la misma de la de los conductores de fase.
· Los conductores de la instalación están identificables por los colores indicados en el Pliego de Condiciones de este Proyecto.

· La instalación interior se ha sub dividido de forma que las perturbaciones originadas por averías que puedan producirse en un punto de ellas, afecten solamente a ciertas partes de la instalación, para lo cual los dispositivos de protección de cada circuito están adecuadamente coordinados y son selectivos con los dispositivos generales de protección que les precedan.

· La instalación ha quedado dividida en varios circuitos, según las necesidades. La rigidez eléctrica sea tal que sometida la instalación a una tensión de 1.500 V con todos los receptores desconectados sea capaz de resistir intacta durante 1 minuto.

· Las bases de toma de corriente y las conexiones cumplen con esta ITC, según se indica en el Pliego de Condiciones de este Proyecto.

La instalación interior que se proyecta cumple con lo establecido en esta ITC, tal como se indica en el resto de documentos del presente Proyecto.

Especialmente en lo que se refiere a conductores aislados bajo tubos protectores.

Todos los conductores irán alojados en tubos protectores que se colocarán:

· Empotrados en derivación individual mediante tubos no metálicos flexibles.

· Empotrados en paramentos verticales mediante tubos no metálicos flexibles

· Enterrados en alimentación de tomas de corriente situadas en el suelo.

· Con tubos al aire en falso techo mediante tubos no metálicos flexibles.
Tanto los diámetros de los tubos como su colocación cumplen con lo especificado en esta ITC.

Consiguiendo así:

- Evitar las interrupciones innecesarias de todo el circuito y limitar las consecuencias de un fallo.
- Facilitar las verificaciones, ensayos y mantenimientos.
- Evitar los riesgos que podrían resultar del fallo de un solo circuito.

- Se ha diseñado la instalación de manera que se mantenga el mayor equilibrio posible en la carga de los conductores que forman parte de la instalación, procurando que la carga quede repartida entre sus fases o conductores polares.

- Todos los receptores podrán desconectarse de la instalación mediante interruptores manuales, clavijas de las tomas de corriente de intensidad nominal no superior a 16 A y siempre desde los interruptores multipolares que protegen cada circuito.

- Se han tomado las pertinentes medidas de protección contra contactos directos o indirectos que puedan suponer riesgo para las personas y los animales domésticos tanto en servicio normal como cuando puedan presentarse averías previsibles.

- Todos los materiales proyectados cumplirán las siguientes condiciones:

 - La resistencia de aislamiento de la instalación sea mayor de 0,50 UW a una tensión de prueba de 500 V.

La instalación que se proyecta cumple con lo establecido en esta ITC al estar todos los circuitos protegidos contra:

- Sobrecargas, mediante interruptores automáticos de corte omnipolar calibrados al límite de intensidad de corriente admisible de los conductores de cada circuito.
· Cortocircuitos, adoptando una intensidad de cortocircuito adecuada en los interruptores automáticos de corte omnipolar antes citados

· Descargas eléctricas atmosféricas, mediante la colocación de un dispositivo de protección contra sobretensiones en el Cuadro General de Baja Tensión.

En cumplimiento de los expresado en esta ITC, para la protección de la instalación contra las sobretensiones transitorias que se puedan transmitir por las redes de distribución y que se originan, fundamentalmente, como consecuencia de las descargas atmosféricas, conmutaciones de redes y defectos en las mismas, se ha proyectado un dispositivo de protección contra sobretensiones en el Cuadro General de Baja Tensión.

La instalación que se proyecta cumple con lo establecido en esta ITC al instalarse las suficientes medidas destinadas a asegurar la protección de las personas y animales domésticos contra los choques eléctricos debidos a contactos directos e indirectos.

 Concretamente:

· Protección contra contactos directos, mediante protección por aislamiento de las partes activas que no puede ser eliminado más que destruyéndolo.

· Protección contra los contactos indirectos mediante corte automático de la alimentación después de la aparición de un fallo con lo la colocación de interruptores diferenciales calibrados al límite de intensidad de corriente admisible de los conductores de cada circuito y con una intensidad diferencial adecuada.

El local que nos ocupa cumple las condiciones indicadas en esta ITC para considerarlo como local de *pública concurrencia*, al tener una ocupación de más de 50 personas considerando una densidad de ocupación de 1 persona por 0,8 m2

Por esta razón se ha dotado a la instalación de las siguientes características, en cumplimiento de esta ITC:

· Se ha instalado un sistema de alumbrado de emergencia adecuado en los siguientes lugares:

 o En los recorridos generales de evacuación.
 o En los aseos generales de público y personal, sala de descanso.
 o En el Cuadro General de Baja Tensión (oficina, cuarto técnico, panadería)

· Las luminarias que proporcionan el alumbrado de emergencia tienen incorporados todos sus elementos: la batería, la lámpara, el conjunto de mando y los dispositivos de verificación y control.

· El Cuadro General de Baja Tensión se ha situado en el punto más próximo a la entrada de derivación individual.

· El Cuadro General de Baja Tensión dispone de cerradura con llave para evitar que tenga acceso a al mismo el público y personal no autorizado.

· El Cuadro General de Baja Tensión dispone de un sistema de identificación de los circuitos consistente placas indicadoras en cada uno de los interruptores del cuadro.

· La instalación de alumbrado de la zona de público se ha diseñado de manera que el número de líneas secundarias y su disposición en relación con el total de lámparas a alimentar es tal que el corte de corriente en una cualquiera de ellas no afecta a más de la tercera parte del total de lámparas instaladas en los locales o dependencias que se iluminan alimentadas por dichas líneas. Cada una de estas líneas estarán protegidas en su origen contra sobrecargas, cortocircuitos, y si procede contra contactos indirectos.
16.2. Código Técnico de la Edificación.

El Documento Básico HE-3 “Eficiencia energética de las instalaciones de iluminación” establece una serie de consideraciones que la instalación que se proyecta cumple en todo momento.

Para el cálculo de la iluminación interior, cumpliendo con el citado CTE en su sección HE 03 se tendrá en cuenta el tipo de actividad y las dimensiones y características del local, como datos de partida para la obtención el flujo luminoso necesario, la potencia de las lámparas, el número de puntos de luz y la distribución de las mismas.

Estableciéndose:

a) cálculo del valor de eficiencia energética de la instalación VEEI por zona, constatando que no se superan los valores límite consignados en la Tabla 2.1 del apartado 2.1 de la sección HE 3.

b) comprobación de la existencia de un sistema de control y, en su caso, de regulación que optimice el aprovechamiento de la luz natural, cumpliendo lo dispuesto en el apartado 2.2 de la sección HE 3.

c) verificación de la existencia de un plan de mantenimiento, que cumpla con lo dispuesto en el apartado 5 de la sección HE 3.

Se dispone de un servicio técnico de mantenimiento para tal fin, que deberá realizar un programa mantenimiento programado, de limpieza de luminarias, revisión periódica, etc.

Los siguientes parámetros se han tenido en cuenta para realizar el cálculo de la iluminación según se recoge en el Anexo de cálculo de iluminación:

- Índice del local (K) utilizado en el cálculo.

- Factor de mantenimiento (Fm) previsto.

- Iluminancia media horizontal mantenida (Em) obtenida.

- Índice de deslumbramiento unificado (UGR) alcanzado.

- Índices de rendimiento de color (Ra) de las lámparas seleccionadas.
11.2.1.- Eficiencia energética de la instalación.

Las distintas dependencias se han clasificado en los distintos grupos que establece el documento básico HE3:

· Grupo 1: Despachos y aseos, que son zonas de no representación en las que el criterio de diseño, la imagen o el estado anímico que se quiere transmitir al usuario con la iluminación, queda relegado a un segundo plano frente a otros criterios como el nivel de iluminación, el confort visual, la seguridad y la eficiencia energética.

· Grupo 2: Zona de público, donde el criterio de diseño, imagen o el estado anímico que se quiere transmitir al usuario con la iluminación, son preponderantes frente a los criterios de eficiencia energética.

Los valores de la eficiencia energética obtenidos cumplen con este DB del CTE al ser menores que el máximo permitido y se recogen en el Anexo de Cálculos de Iluminación.

11.2.2.- Sistemas de control y regulación.

Para cada zona se establecen los siguientes sistemas de regulación indicados:

<table>
<thead>
<tr>
<th>ZONA</th>
<th>SISTEMAS DE REGULACION Y CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficina</td>
<td>Detector de Presencia automático</td>
</tr>
<tr>
<td>Almacén</td>
<td>Detector de Presencia automático</td>
</tr>
<tr>
<td>Sala de Ventas</td>
<td>Balastros Electrónicos</td>
</tr>
<tr>
<td>Zona de Cajas</td>
<td>Regulación mediante Células</td>
</tr>
<tr>
<td></td>
<td>Fotoeléctricas con sensor de iluminancia</td>
</tr>
<tr>
<td>Pasillo entrada</td>
<td>Regulación mediante Células</td>
</tr>
<tr>
<td></td>
<td>Fotoeléctricas con sensor de iluminancia</td>
</tr>
<tr>
<td>Sala descanso y Vestuario</td>
<td>Detector de Presencia automático</td>
</tr>
</tbody>
</table>
11.2.2.2.- Sistemas de aprovechamiento de la luz natural.

Se ha proyectado un sistema de aprovechamiento de la luz natural que regula el nivel de la iluminación de la zona del pasillo de entrada, en función del aporte de luz natural, dado que el local dispone de un ventanal de 46m² y estar ubicada en una avenida de 70 m de ancho.

El sistema proyectado consta de tres células fotoeléctricas con sensor de iluminancia tipo LDR -Light Dependant Resistor o Resistor dependiente de la Iluminación, de manera que actúe como un resistor que cambia su resistencia cuando cambia la intensidad de la luz que detecta regulando la potencia que suministran las luminarias conectadas al circuito.

11.2.3.- Potencia de las lámparas.

Las lámparas utilizadas en la instalación de iluminación de cada zona tienen una potencia, incluida la de la propia lámpara y sus equipos auxiliares, así como su distribución se recogen en el anexo de cálculos de iluminación.

17. PRESUPUESTO TOTAL

Asciende el presupuesto total del presente Proyecto, incluido IVA, a la cantidad de TRESCIENTOS VEINTISEIS MIL, NOVECIENTOS SESENTA euros con SETENTA Y TRES céntimos de euro (326,960,73 €).

Jaén, Junio 2016.

Fdo. Sagrario Sánchez López